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Abstract
The problem of the interaction of two quasimolecular electrons located at an
arbitrary distance from each other and near different atoms (nuclei) is solved.
Effects of the third order of quantum electrodynamics, which include the
exchange of a virtual photon between the electrons and emission (absorption)
of a real photon, are considered. The general expression for the matrix elements
of the operator of the effective interaction energy of the two quasimolecular
electrons with the external radiation field, which allows us to calculate the
probabilities of inelastic processes with rearrangement in slow collisions of
multiply-charged ions with relativistic atoms, is obtained. Carrying out
consistently the procedure of symmetrization of the retardation factor with
respect to both the electrons results in the appearance of additional terms in
the relativistic operator of the interaction of two quasimolecular electrons in
comparison with both the standard and generalized Breit operators known
previously.

PACS numbers: 31.30.J−, 34.70.+e

1. Introduction

Inelastic collisions of atomic particles, especially multielectron ones, are accompanied by
many processes of modification of their charge and electronic states. The simplest examples,
which are studied quite well, are one-electron ion–atom processes with rearrangement (for
example, the resonance and quasi-resonance charge exchange), in which only one electron
changes the state and the other one can be considered frozen. Such processes have high
efficiency and play an important role in formation of the inverse population of ionic levels
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Figure 1. The Feynman diagrams of the third-order effects of QED for the interaction of the two
quasimolecular electrons with emission or absorption of the real photon.

in solar coronal plasma and new thermonuclear facilities [1, 2]. However, the two-electron
processes with rearrangement have either the same or larger probabilities when compared with
the one-electron processes [3–7] at thermal energies of collisions. Various Auger processes
studied by Kishinevsky and Parilis [7], the two-electron capture [3–6] and the two-electron
capture with simultaneous excitation of an ion [4] occupy an important place among the two-
electron processes. Large values of total cross-sections and velocity constants allow us to
assume that the specified processes with rearrangement are determined by electron transitions
when the distance R between colliding particles is rather large. The presence of a small
parameter 1/R gives a chance to elaborate a consistent asymptotic theory of such processes.
No wonder that the framework of the asymptotic approach [3, 4, 6, 8, 9] has solely allowed
many approved results to be obtained in the theory of multielectron ion–atom processes.

Additionally, in the last few decades considerable attention was given to study the
influence of intensive electromagnetic radiation on characteristics of the inelastic processes
accompanying collisions of highly charged ions with heavy atoms. Interest in this range of
problems is caused by the possibility of inducing (by means of laser radiation) various processes
occurring in ion–atom collisions, which involve electrons of outer and inner shells. In the
majority of theoretical and experimental papers, the two-electron processes with rearrangement
(see, e.g., [2, 6, 10–14] and references therein), which happen at large internuclear distances
and are accompanied by absorption (emission) of photons, has been considered. The specified
processes contain the strongly correlated electron transitions, which recently were intensively
studied both experimentally [2, 12] and theoretically [10, 13]. Clarification of the basic
features and basic mechanisms of radiative collisional processes with rearrangement is crucial
for this field.

Since the future interest in similar investigations will doubtlessly increase, it is worthwhile
to consider in detail the course of quantum processes corresponding to the Feynman diagrams
presented in figure 1. To do that, it is necessary to take into account the fact that the followed
exchange mechanism is typical for all two-electron processes with rearrangement: one of the
active electrons of atom (ion) A(Za−2)+ tunnels to a ‘foreign’ ion BZb+ with the following dipole–
multipole simultaneous transition of two electrons located near different nuclei. Therefore, we
assume in the present paper that the exchange matrix element corresponding to the course of
two-electron processes with rearrangement is determined by the configuration when the active
electrons are far apart—near different atoms (nuclei). In the case when under favourable
conditions, the mechanisms of nonadiabatic coupling cause multielectronic transitions by
involving the electrons of inner shells; the realistic calculations of parameters of the interaction
of heavy (relativistic) atomic particles in the course of the collision should be based on the
completely relativistic theory. However, even the formulation of the two-particle problem in
the relativistic quantum theory encounters principal mathematical and logical obstacles. This
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is mainly caused by the absence of the local Lorentz-invariant operator that takes into account
the relativistic nature of the interelectron interaction (the effects of retardation). The modern
quantum field theory of electromagnetic interactions (quantum electrodynamics), based on the
S-matrix formalism and Feynman diagram technique, gives only the recipe of construction of
such an operator in the form of a series in powers of α2 (where α ≈ 1/137 is the fine structure
constant). As early as 1929, Breit demonstrated [15] that accounting for the first (non-zero)
term of such an expansion is a good approximation for the relativistic interaction between the
two electrons under the condition of smallness of the retardation effects in the spectrum of
He-like atoms. The expression for the relativistic operator of the interaction of two electrons
obtained by Breit is of the form [15]

V (�r12) = VC(r12) + VB(�r12) = e2

r12
− e2

2r12

[
�α1 �α2 +

(�α1�r12)(�α2�r12)

r2
12

]
, (1)

where �α1 and �α2 are the two commuting sets of the Dirac matrices, �r12 = �r1 − �r2, and
the lower indices 1 and 2 distinguish the quantities relating to the first and second electron,
respectively.

To date, expression (1) for the operator of the interelectron interaction is the base of
most applications of the quasi-relativistic Dirac–Breit equation to multielectron problems of
atomic physics and astrophysics. In particular, the quantum electrodynamic corrections of the
Breit type VB are often included in the perturbative calculations of atomic structures [16], but
have not been taken into account in calculations of the electron structure of heavy multiply
charged quasimolecules until now. However, the applicability of the Breit operator (1) is
restricted by the requirement of smallness of the time Tint = r12/c of interaction transmission
when compared with the average time T0 = 2π/ω0 of electronic transitions, where ω0 is
the characteristic frequency of a spectrum of interacting electrons. It is obvious that this
requirement is certainly satisfied when the distances between electrons are not too large, e.g.
the interatomic distances of He-like atoms.

In view of this, in our previous paper [17], we have given the arguments that cast doubt
on the possibility of using the Breit operator (1) for determination of the asymptotics of
the exchange interaction, corresponding to simultaneous capture of two electrons in slow
collisions of multiply-charged ions with atoms [3, 4]. In essence, these arguments pertain
equally to other two-electron processes with rearrangement, including radiative collisional
ones, if the basic contribution to the transition probability comes from the configuration when
the electrons are located near different nuclei and the approximation of independent electrons
is valid as a zero approximation. In fact, we meet here a new quantum electrodynamic problem
of interaction of two quasimolecular electrons with emission (absorption) of a real photon that
has no satisfactory solution until now. As far back as in the early seventies of the last century,
the interest in the given problem arose in the connection with the intensive study of multiatomic
systems placed into a field of radiation. The credit for the realization and development of new
ideas in this direction goes to the authors of papers [18–21], where the problem of interaction of
two bound electrons belonging to two hydrogen-like atoms was considered by using methods
of quantum electrodynamics without any restrictions on interatomic distances. However,
the generalized Breit operator constructed in the above quoted papers does not manifest the
symmetry with respect to the interacting particles and therefore, cannot be utilized in the
consistent relativistic quantum theory. It is precisely this circumstance that motivated us to
return to the problem of two quasimolecular electrons anew.

The structure of the paper is as follows. In section 2, the general expression for the
matrix element of the operator of the effective energy of interaction of the system of two
quasimolecular electrons with the external field of radiation is given. In section 3, the
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relativistic operator of interaction of two quasimolecular electrons via the field of virtual
photons with emission (absorption) of the real photon is constructed. This operator is the
generalization of the well-known Breit operator (1).

2. The matrix of effective energy of the interaction of two quasimolecular electrons at
an arbitrary distance from each other

Describing a quasimolecule (AB)(Za+Zb−2)+ by methods of quantum electrodynamics, we
consider it as a system of two electrons that interact via quantized electromagnetic field and
move in an external (electric) field of two fixed nuclei AZa+ and BZb+ with charges Za and
Zb located at distance R from each other. Hereinafter, the nuclei are assumed to be infinitely
heavy, point-like and structureless.

The simplest systems of this type are two-electron heteronuclear quasimolecules HeH+,
HeBe4+, HeC6+, etc. Such quasimolecules are produced in atmospheres of stars and
experiments with thermonuclear plasma and atomic (or ionic) beams. These systems are
as important as a helium atom in the theory of multielectron atoms. The results obtained
here and developed theoretical methods can be used further for the investigation of more
complicated quasimolecular systems.

The quantum electrodynamic perturbation theory based on the S-matrix formalism and
Feynman diagram technique is a natural ground for the field-theoretic consideration of quantum
mechanical problems. Here all interesting physical quantities, including the interaction
potentials (exchange and long-range) of particles in the course of collision of the two-electron
atom A(Za−2)+ with the slow multiply-charged ion BZb+, can be expressed in terms of the
S-matrix, for which calculation we can use the standard Feynman rules formulated in quantum
electrodynamics. In its standard quantum mechanical form (see, e.g., [3, 4, 8]), the matrix
element of the two-electron exchange interaction of the atom A(Za−2)+ with the ion BZb+

is determined as a non-diagonal matrix element of the operator of interelectron interaction
calculated between (adiabatic) electron wavefunctions of the quasimolecule (AB)(Za+Zb−2)+,
which correspond to the cases of various localizations of active electrons in the initial and
final states. In the quantum electrodynamic approach used below, this matrix element is a
constituent of a more general matrix element of the operator of effective energy of interaction
of the system of two quasimolecular electrons with an external field of radiation. In this case,
the third-order effects of quantum electrodynamics, which include the exchange of virtual
photons between the electrons and emission (absorption) of a real photon, are considered. The
Feynman diagrams of these effects are presented in figure 1; two parts of the interaction, each
of which takes into account the intermediate states in the quasimolecular spectrum with either
positive or negative frequency, are separated.

In order to reach the solution of the formulated problem, we shall consider processes of
interaction of two quasimolecular electrons located near different nuclei that are accompanied
by emission or absorption of real photons. To achieve this aim, we shall not follow previous
papers [15, 22, 23] in assuming that the interelectron distance r12 is small in comparison
with the corresponding wavelength λ0 = 2πc/ω0 in the spectrum of the interacting electrons.
All the equations obtained below are valid for arbitrary interelectron distances including
arbitrarily large ones. One can meet the latter case (see review [4]) when seeking asymptotics
(R → ∞) of the exchange interaction corresponding to the course of various multielectron
processes with rearrangement in slow collisions of atoms with multiply-charged ions. The
typical example of a process with rearrangement, occurring due to the direct interaction of two
electrons located near different nuclei, is the quasiresonant two-electron charge exchange of
atoms A(Za−2)+ (e.g. helium) on multiply-charged ions BZb+ (N5+ [24], Ar6+ [25], C4+ [3–5]).
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When the collision velocities are smaller than the orbital velocities of the bound electrons,
the two-electron capture happens at large distances between the colliding atomic particles:
R ∼ r12 � 1. In the operating (i.e. asymptotic) domain of internuclear distances, the process
occurs basically as an overlap of two inelastic transitions for each electron separately: the
electron from an outer (inner) orbit of the atom A(Za−2)+ transfers to an inner (outer) orbit of
the atom B(Zb−2)+. Inelastic transitions are possible only as a result of the interaction of the
electrons with each other via a field of virtual photons. The specified ‘crossing’ transitions
of the electrons [3, 4] cause filling the intermediate excited states of the multiply charged
projectile ion with following emission of photons in the short-wave ultra-violet and long-wave
x-ray ranges of the spectrum.

In recent years, the cross-sections of radiation emission for some transitions in excited
multiply-charged ions, created in the course of capture of the electrons by ions with charges
Zb = 3 ÷ 8 (Zb = 10, 18, 36) from atoms of helium (argon) and from hydrogen molecules,
have been determined by the methods of optical spectroscopy (see, e.g., [26]). In particular,
the existence of the radiative two-electron charge exchange has been confirmed in experiments
[24] in collisions of ions N5+ with atoms of helium at energies 0.357–4.28 keV per charge
unit, where radiation of the line 76.5 nm (the transition 2s2 1S–2s2p 1P in N3+) was observed.

We shall now calculate the S-matrix of the third-order quantum electrodynamic effects,
defined by the Feynman diagrams shown in figure 1. Let the coefficients m and n (p and r)
denote sets of quantum numbers of the initial (final) states of the electrons. According to the
general rules formulated, e.g. in [22], we obtain the matrix element

S
(3)
i→f = S(3)

mn,pr − S(3)
nm,pr , (2)

where

S(3)
mn,pr = −ie3

∫
�r(x

′
1)�p(x ′′′

2 )K
(3)
12 (1, 2; 3)�m(x ′′

1 )�n(x
′′′
2 ) d4x ′

1 d4x ′′
1 d4x ′′′

2 , (3)

and S(3)
nm,pr differs from S(3)

mn,pr by the permutation of indices m and n. Hereinafter, we use
units h̄ = c = 1 and the following notations: e = −|e| is the electron charge, �m(n) are the
solutions of the Dirac equation with the potential of two Coulomb centres for the given initial
electronic states m(n),�r(p) ≡ �+γ4, �

+ is the Hermitian conjugate two-Coulomb-centre
wavefunction of the final electronic states r(p), x ≡ (�r, it) is a four-dimensional vector and
�r is a usual three-dimensional position vector of the electron relative to the nucleus AZa+ or
BZb+. Indices 1 and 2 are used to denote the quantities corresponding to the different electrons.

Using the standard rules of correspondence [22], it is easy to verify that the operator
K

(3)
12 (1, 2, 3) in (3) has the following analytic structure:

K
(3)
12 (1, 2; 3) = Â(x ′

1)S(x ′
1, x

′′
1 )γ ′′

μ1
D(x ′′

1 − x ′′′
2 )γ ′′′

μ2
+ γ ′

μ1
S(x ′

1, x
′′
1 )Â(x ′′

1 )γ ′′′
μ2

D(x ′
1 − x ′′′

2 ). (4)

Here, γμ ≡ (�γ , γ4) is the covariant form of the Dirac matrices, �γ = −iβ �α, γ4 = β,

�α =
(

0 �σ
�σ 0

)
, β =

(
I 0
0 −I

)
,

�σ are the Pauli matrices, 0 and I are, respectively, 2 × 2 zero and unit matrices. The symbol Â

denotes the convolution of the components of the 4-vector Aμ (μ = 1, 2, 3, 4) with the Dirac
matrices γμ: Â = ∑

μ γμAμ. In the representation of the secondary quantization, we write
the operator of the four-dimensional potential of the electromagnetic field in the form

Aμ(x ′
1) =

∑
�k,λ

g�ke
λ

μ�k
(
Ĉ�kλeikx ′

1 + Ĉ+
�kλ

e−ikx ′
1
)
, (5)
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where kx ′
1 = �k�r ′

1 − ω�kt
′
1 is the scalar product of the four-dimensional vector x ′

1 = (�r ′
1, it ′1)

and the four-dimensional wave vector k = (�k, iω�k) satisfying the condition k2 = �k2 − ω2
�k =

0, ω�k ≡ ω is the frequency of real photons, eλ

μ�k are the unit vectors of polarization of real

photons (indices λ = 1, 2 correspond to the transverse polarization); Ĉ+
�kλ

and Ĉ�kλ are the
operators of creation and annihilation of real photons in the states with the polarisation
λ = 1, 2, momentum �k and energy ω. The coupling constants g�k = (2π/ω
)1/2 contain the
normalization volume 
, and since the final expressions does not contain 
, we shall assume
that 
 = 1 henceforth.

In the Furry pattern [22], the electron propagator,

S(x ′
1, x

′′
1 ) = 1

2π i

∫ ∞

−∞
dω′′ eiω′′(t ′1−t ′′1 )

∑
l±

�l(�r ′
1)�l(�r ′′

1 )

ωl(1 − i0) + ω′′ , (6)

corresponds to the internal electron lines in the diagrams of figure 1. The summation in (6) is
carried out over all the intermediate electronic states with both positive (l = l+) and negative
(l = l−) frequencies. In the Feynman gauge, the propagator

D(x ′′
1 − x ′′′

2 ) = 4π

i(2π)4

∫
exp{i[k′(�r ′′

1 − �r ′′′
2 ) − ω′(t ′′1 − t ′′′2 )]}

�k′2 − ω′2 − i0
d�k′ dω′ (7)

corresponds to the internal photon lines, where �k′ denotes the wave vector of the virtual
photons with the frequency ω′.

The primed indices of four-dimensional vectors x = (�r, it) and the γ -matrices in the
operator (4) and in the wavefunctions indicate that they belong to the domains of integration
over the spacetime coordinates of the interacting particles in the S-matrix (3). The Dirac
matrices γμ with different primed indices are mutually commuting.

The matrix element S(3)
mn,pr can be represented in the form that is convenient for applications

and allows for a simple physical interpretation. For this purpose, let us separate the time factors

�m(x ′′
1 ) = �m(�r ′′

1 ) e−iωmt ′′1 (8)

in the wavefunctions from (3) (similarly for �n,�r and �p). Consider instead of the S-matrix,
the matrix of effective energy of interaction U(3)

mn,pr of a system of two bound electrons that is
defined by the relation

S(3)
mn,pr = −2π iU(3)

mn,prδ(ω + ωp − ωm + ωr − ωn). (9)

Here, ωm,ωn are frequencies of the initial states of the electrons and ωr, ωp are frequencies
of the final states. The sign of the frequency of an optical photon ω indicates that the positive-
frequency part, which is proportionate to the creation operator of the photon in the given mode
�kλ, is separated in the operator of the vector potential (5). The factorized one-dimensional
δ-function usually expresses the law of conservation of energy

Ep − Em + Er − En + h̄ω = 0, (10)

which is general for all the considered effects of the third-order (interaction of the electrons
via the field of virtual photons + emission (absorption) of a real photon). The dependence on
the Planck constant h̄ in equation (10) is recovered in the explicit form. Equations (9) and
(10) are written for the processes involving emission of a real photon; one has to flip the sign
of the frequency ω in (9) and (10) to obtain the corresponding relations for absorption.

Having substituted the explicit expressions (6)–(8) for the propagators and the
wavefunctions into the matrix operator (3) and carried out the integration over the times
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t ′1, t
′′
1 , t ′′′2 , the frequencies and the wave vectors in the matrix S(3)

mn,pr , we obtain the following
matrix of the effective energy of interaction (h̄ = c = 1):

U(3)
mn,pr = e3

∫
d�r ′ d�r ′′ d�r ′′′

{
− 1

|�r ′′ − �r ′′′|
∑
l±

exp{i|ωp − ωn‖�r ′′ − �r ′′′|}
ωl(1 − i0) − ω − ωr

�r(�r ′)Â(�r ′)

×�l(�r ′)�l(�r ′′)γ ′′
μ�m(�r ′′)�p(�r ′′′)γ ′′′

μ �n(�r ′′′)

− 1

|�r ′ − �r ′′′|
∑
l±

exp{i|ωp − ωn‖�r ′ − �r ′′′|}
ωl(1 − i0) + ω − ωm

×�r(�r ′)γ ′
μ�l(�r ′)�l(�r ′′)Â(�r ′′)�m(�r ′′)�p(�r ′′′)γ ′′′

μ �n(�r ′′′)

}
, (11)

where �m(n), �r(p) and �l are the coordinate wavefunctions of the electrons (without the time
factors), and �r ′ and �r ′′ are the position vectors of the first electron, and �r ′′′ is the position vector
of the second electron. Matrix (2) corresponds to one of the eight processes that occur due
to the interaction of the active electrons via the field of virtual photons and are accompanied
by emission (absorption) of a real photon. Other processes can be taken into account by the
corresponding change of notation of the wavefunctions.

3. The generalized Breit operator

Following the previous section, one can represent the general expression for the matrix of the
effective energy of interaction of the two bound quasimolecular electrons with the external
field of radiation in the form

U
(3)
i→f = U(3)

mn,pr − U(3)
nm,pr . (12)

According to (11), the matrix element U(3)
mn,pr reads

U(3)
mn,pr = e3

∫
�+

r (�r ′)�+
p(�r ′′′)

∑
l±

{
γ ′

4γ
′
δA

′
δ

�l(�r ′)�+
l (�r ′′)

ωl(1 − i0) − ω − ωr

× 1 − �α′′ �α′′′

|�r ′′ − �r ′′′| exp{i|ωp − ωn‖�r ′′ − �r ′′′|}

+
1 − �α′ �α′′′

|�r ′ − �r ′′′| exp{i|ωp − ωn‖�r ′ − �r ′′′|}

× �l(�r ′)�+
l (�r ′′)

ωl(1 − i0) + ω − ωm

γ ′′
4 γ ′′

δ A′′
δ

}
�m(�r ′′)�n(�r ′′′) d�r ′ d�r ′′ d�r ′′′. (13)

Here �α′, �α′′, �α′′′ are the Dirac matrices, the operator �α′′(�α′) acts on the function �m(�r ′′)
(�l(�r ′)) and the operator �α′′′ acts on the function �n(�r ′′′); Aδ are the components of the vector
potential without the time factors, the index δ covers the values of 1, 2, 3 and the summation
over the twice repeated index δ is carried out from δ = 1 to δ = 3.

Let us consider the first term in (13), and inside it, we separate the factor

K(�r ′′, �r ′′′;ωpn) = 1 − �α′′ �α′′′

|�r ′′ − �r ′′′| exp

{
i

c
|ωpn‖�r ′′ − �r ′′′|

}
, (14)

corresponding to the exchange of virtual photons between the two electrons. Here,
ωpn = ωp − ωn, and we use the system of units where c �= 1. Because the retardation
factor exp

{
i
c
|ωpn‖�r ′′ − �r ′′′|}, which depends explicitly on the initial and final energies of the

system, appears in this expression, in the general case we cannot introduce the operator of
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the interaction between the two electrons B1l (�r ′′, �r ′′′), whose matrix element would be equal
to U(3)

mn,pr . However, we can construct such an operator within the approximation of small
velocities (v/c � 1, where v is the velocity of the electron in the atom and c is the velocity of
light in the vacuum).

Since expression (13) is valid in the united-atom limit (R → 0, Z = Za + Zb), it is
worthwhile to use the simple example of two interacting electrons in a He-like atom in order
to trace the procedure of replacement of the retardation factor in (14) by the corresponding
operator. In this case, the estimate |ωpn| ∼ m(αZ)2 takes place for the characteristic value
of ωpn, where Z = Za + Zb is the total charge of the nuclei AZa+ and BZb+. Furthermore,
we take into account that the characteristic value of the interelectron distance is defined by
atomic sizes: |�r ′′ − �r ′′′| ∼ (mαZ)−1. Hence, under the condition αZ � 1, the exponent in
(14) is a small quantity of the order of αZ, so one can expand the exponential factor in powers
of 1/c to within terms O(c−3). The transition from the specified expansion to its operator
form in the c−2-approximation is carried out by an appropriate symmetrization of all terms
retained in the c−1-expansion of the retardation factor (14) and by the subsequent replacement
of the frequencies (by means of the Dirac equation) by the corresponding Hamiltonians of the
separate electrons. As a result, we arrive at the known expression (1) for the Breit operator
[15, 22, 23], which depends not only on the relative position of the pair of the electrons, but
also on their spin variables.

Now we can say that the Breit expression (1) is a good approximation for the relativistic
interaction between the two electrons as long as interelectron distances of interest are smaller
than the corresponding wavelengths λ0 = 2πc/ω0 in the spectrum of the interacting electrons.
However, the results will be invalid, if we use expression (1) in the two-electron problems
related to slow atomic collisions because interelectron distances are large.

In the case of interaction of the two quasimolecular electrons located at an arbitrary
distance from each other near different nuclei, we meet with a radically opposite situation.
Here, the situation becomes complicated because the absolute value of the exponents in
U(3)

mn,pr -matrix (13) becomes larger than a unit and the exponential factors become rapidly
oscillating functions in the (asymptotic) domain of interelectron distances of interest. The
specified circumstance renders the impossibility of direct usage of the several first terms of
the c−1-expansion of the retardation factor to construct the relativistic operator of interaction
of the two bound electrons at arbitrary distances between them (including arbitrarily large
ones). At the same time, this far domain of interelectron distances determines the probabilities
of processes with rearrangement in the asymptotic limit (R → ∞) in many two-electron
problems of the theory of slow atomic collisions (e.g. the problem of quasiresonant two-
electron charge exchange in the reaction He + N5+ → He2++ N3+). In this domain, which we
shall call the domain of far electron correlations, the effects of retardation of interaction of
charged particles are amplified essentially.

As mentioned in the introduction, the fundamental possibility of generalization of the Breit
operator to the case of quasimolecular electrons has been established in papers [19, 20] in
the example of the problem of interaction of two bound electrons belonging to two hydrogen-
like atoms, located at an arbitrary distance from each other. However, referring to these
papers, we have discovered [17] that the generalized Breit operator obtained therein does not
manifest the symmetry with respect to the interacting particles and, therefore, cannot be utilized
in the consistent relativistic quantum theory. As mentioned in [17], the essential deficiency
of the procedure of passing from the retardation factor to the corresponding operator, which
was accepted in papers [19, 20], consists in an unequal treatment of the pair of interacting
particles. The problem of two quasimolecular electrons with emission (absorption) of a real
photon demands a further careful investigation for this very reason.

8
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The method, which we shall use to solve this important quantum electrodynamic problem,
represents a further development of the method applied in papers [17, 19] to solving the
problem of the interaction of two atomic electrons in the framework of the second-order
effects of quantum electrodynamics. As shown below, consistent application of the procedure
of symmetrization of the retardation factor with respect to both the particles leads to the
appearance of additional terms in the relativistic operator of the interaction of the two electrons
when compared to both the standard (1) and generalized [20] Breit operators.

As known [3, 4, 27], the exponential dependence of one-electron two-centre
wavefunctions on coordinates results in the fact that at large internuclear distances R, the
integration over �r ′′ or �r ′ in expression (13) is localized in the vicinity of the nucleus BZb+.
In (13), the integration over �r ′′′ is basically localized in the vicinity of AZa+. Thus, two
spherical domains of coordinates |�r ′ − �R| (|�r ′′ − �R|) � (mαZb)

−1 and |�r ′′′| � (mαZa)
−1,

which physically correspond to the localization of the electrons near the different centres, are
the most essential for rather large R in the corresponding integrals of matrix (13). For the
specified domains of electron coordinates, it is necessary to construct the operator B1l(�r ′′, �r ′′′),
describing the exchange of virtual photons in terms of matrix (13).

After these preliminary remarks, we shall immediately deduce the relativistic operator of
interaction of the two quasimolecular electrons located at an arbitrary distance from each other.
The initial object for us is the two-electron atom A(Za−2)+ located at an arbitrary distance R
from the nucleus BZb+. Consider now the typical situation (for processes with rearrangement)
when one of the active electrons of the atom A(Za−2)+, say the first electron, has tunnelled
into the vicinity of the ‘foreign’ nucleus BZb+ and the second electron has remained near the
‘host’ nucleus AZa+. If the domains of spatial localization of the electrons near the different
nuclei (of the first electron near the nucleus BZb+ and of the second one near AZa+) are rather
small (of the order of atomic sizes) and rather far apart, then the relative distance between the
electrons can be expanded in powers of the ratio �r/R under the condition �r < R < ∞,

|�r ′′ − �r ′′′| = R

(
1 +

�R��r
R2

+
M

R

)
. (15)

Here, ��r = �r1b − �r2a,�r = |��r|, �r1b (�r2a) is the position vector of the first (second) electron
with respect to the nucleus BZb+ (AZa+), M = M(��r, �R) are small corrections containing
higher powers of �r/R. Therewith, the smallness of the parameter �r/R means that the
electrons are located close to the different atoms (nuclei).

In previous papers [15, 22, 23], when constructing the expansion of the retardation factor,
it was assumed that is the quantity ω0r/c � 1 (or formally 1/c) is a unique small parameter,
where r is the distance between the electrons. It is obvious that this requirement is satisfied
for not too large distances between the electrons, for instance, for interatomic distances of
helium-like atoms. The asymptotic expansion of the K-factor (14) is constructed below for
the case when both 1/c and �r/R are natural small parameters. Such a selection of small
parameters differs from the limiting case of the one (united) He-like atom (R = 0), studied
by Drake [23], and is realized within the used quasimolecular model, for instance, when the
electrons are far apart and near the different centres.

To assign the exact meaning to the K-factor (14), we transform it as follows:

K(�r ′′, �r ′′′;ωpn) = 1 − �α′′ �α′′′

|�r ′′ − �r ′′′| e
i
c
|ωpn|R e

i
c
|ωpn|(|�r ′′−�r ′′′ |−R). (16)

For the quasimolecular electrons located near the different nuclei, the performed
transformation is convenient due to the factorization of the R-dependent relativistic factor
exp

{
i
c
|ωpn|R

}
of the amplification of the effects of dynamic retardation of the interaction,

9



J. Phys. A: Math. Theor. 43 (2010) 175208 V Yu Lazur et al

which are encoded in the dependence of this factor on the initial and final energies of the
system: ωpn = Ep − En. However, a basic advantage of such a transformation is the fact
that the problem of the expansion of the retardation factor (14) is reduced to the expansion
of the specialized (for the considered quasimolecular model with the two electrons near
the different centres) exponential multiplier exp

{
i
c
|ωpn|(|�r ′′ − �r ′′′| − R)

}
by means of this

transformation. The presence of the difference |�r ′′ − �r ′′′| − R in the last exponent indicates
that such an expansion should be carried out not only in the powers of 1/c, but also in the
powers of the small parameter �r/R.

Henceforth, we shall assume that the requirement

1

c
|ωpn|

�R��r
R

� 1 (17)

is satisfied. The distance R between the nuclei can vary in the range �r � R < ∞ and has a
dynamical meaning in our problem, i.e. it appears in the expression for the energy spectrum.

The analysis given above demonstrates that under condition (17), the exponential factor
exp

{
i
c
|ωpn|(|�r ′′−�r ′′′|−R)

}
on the right-hand side of (16) is small, compared to an unity. This

fact allows us to formally expand the K-factor (16) in powers of 1/c. We have the expansion
up to the terms of the order of c−2 inclusively:

K(�r ′′, �r ′′′;ωpn) = (1 − �α′′ �α′′′) exp

{
i

c
|ωpn|R

}
×

{
f0(�r ′′, �r ′′′) +

i

c
|ωpn|f1(�r ′′, �r ′′′) − 1

2c2
ω2

pnf2(�r ′′, �r ′′′)
}

. (18)

We provide the explicit form of the coefficient functions f0, f1 and f 2, finally determining
the dependence of the required relativistic operator B1l(�r ′′, �r ′′′) on the spatial positions of the
electrons:

f0(�r ′′, �r ′′′) = 1

g0(�r ′′, �r ′′′)
= 1

|�r ′′ − �r ′′′| ,

f1(�r ′′, �r ′′′) = g1(�r ′′, �r ′′′)
g0(�r ′′, �r ′′′)

= |�r ′′ − �r ′′′| − R

|�r ′′ − �r ′′′| , (19)

f2(�r ′′, �r ′′′) = g2(�r ′′, �r ′′′)
g0(�r ′′, �r ′′′)

= (|�r ′′ − �r ′′′| − R)2

|�r ′′ − �r ′′′| .

Now let us use the fact that the considered problem contains (in addition to 1/c) one more
small parameter �r/R and expand the functions g0, g1, g2 appearing on the right-hand side
of equalities (19) in powers of �r/R:

g0(��r, �R) = R

[
1 +

�R��r
R2

+
M

R

]
,

g1(��r, �R) =
�R��r
R

+ M, g2(��r, �R) =
[ �R��r

R
+ M

]2

.

(20)

Note that in this case, given formulae (15), (20) are heuristic in character because only the
leading terms of the asymptotic expansions are written in an explicit form here.

From the form of expressions (15) and (20), it formally follows that the parameter of
expansion (18) is actually not 1/c, but the small dimensionless quantity (17), and it is obvious
that the expansion coefficients (18) in turn are power series in �r/R. Actually, it means that
if the distance between the electrons is comparable with the distance between the nuclei, then
one can use formulae (20) and expand the functions f0, f1, f2 (18) into power series with

10
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respect to �r/R. If such expansion is not performed, then one can take into account (within
the c−2-approximation of interest) the interaction of the quasimolecular electrons of all the
multipolarities in the closed form.

We eliminate the frequencies in expression (18) by using the Dirac equations:

Ĥ ′′�m(�r ′′) = ωm�m(�r ′′), Ĥ ′′′�n(�r ′′′) = ωn�n(�r ′′′). (21)

Evidently, in order to take into account completely the retardation effects of interaction of the
electrons, we should transform the expansion of the K-factor (18) such that it takes the form
that is symmetric with respect to both the electrons. We shall carry out such symmetrization
below and simultaneously represent the required relativistic operator B1l(�r ′′, �r ′′′) in the form
that is convenient for perturbative calculations.

In order to move from frequencies to operators, we shall first transform the second term
(on the right-hand side of (18)) into a slightly different equivalent form. Namely, by means of
the easily checkable relation ωn − ωp = R1l(ωl − ωm), we divide this term into two groups of
terms:

|ωpn|f1(�r ′′, �r ′′′) ≡ ± 1
2 [R1l(ωl − ωm) + (ωn − ωp)]f1(�r ′′, �r ′′′). (22)

Here, R1l = (ωn −ωp)/(ωl −ωm), the plus sign in (22) corresponds to the case ωp < ωn, and
the minus sign corresponds to the case ωp > ωn. Because in the calculations of the matrix
elements (13), the quantity K(�r ′′, �r ′′′;ωpn) is always multiplied by �+

l (�r ′′)�+
p(�r ′′′) from the

left and by �m(�r ′′)�n(�r ′′′) from the right and subsequently integrated over �r ′′ and �r ′′′, one
can replace the frequencies ωm and ωn in the last expression by the operators Ĥ ′′ and Ĥ ′′′ to
the right of the factor f1(�r ′′, �r ′′′) and replace the frequencies ωl and ωp with the operators Ĥ ′′

and Ĥ ′′′ to the left of the factor f1(�r ′′, �r ′′′). After such transformations, the expression on the
right-hand side of (22) takes the following form:

|ωpn|f1(�r ′′, �r ′′′) → ± 1
2 {R1l[Ĥ

′′f1(�r ′′, �r ′′′) − f1(�r ′′, �r ′′′)Ĥ ′′] + f1(�r ′′, �r ′′′)Ĥ ′′′

− Ĥ ′′′f1(�r ′′, �r ′′′)} = ± 1
2 {R1l[Ĥ

′′, f1(�r ′′, �r ′′′)] + [f1(�r ′′, �r ′′′), Ĥ ′′′]}. (23)

Hereinafter, the square brackets denote the commutators of corresponding quantities.
Taking into account the relation ωn − ωp = R1l (ωl − ωm), we transform the third term in

expansion (18) to the symmetric form

− ω2
pnf2(�r ′′, �r ′′′) = R1l (ωl − ωm)(ωp − ωn)f2(�r ′′, �r ′′′). (24)

Replace the frequencies in (24) by operators analogously to what has been done in (23). Then,
we have the following transformation:

−ω2
pnf2(�r ′′, �r ′′′) → R1l{f2(�r ′′, �r ′′′)Ĥ ′′Ĥ ′′′ − Ĥ ′′f2(�r ′′, �r ′′′)Ĥ ′′′ − Ĥ ′′′f2(�r ′′, �r ′′′)Ĥ ′′

+ Ĥ ′′Ĥ ′′′f2(�r ′′, �r ′′′)} = R1l[Ĥ
′′, [Ĥ ′′′, f2(�r ′′, �r ′′′)]]. (25)

Having substituted the operator expressions (23) and (25) into the right-hand side of (18), we
arrive at the following transformation of the K-factor:

K(�r ′′, �r ′′′;ωpn) → (1 − �α′′ �α′′′) e
i
c
|ωpn|R

{
f0(�r ′′, �r ′′′) ± i

2c
(R1l[Ĥ

′′, f1(�r ′′, �r ′′′)]

+ [f1(�r ′′, �r ′′′), Ĥ ′′′]) +
R1l

2c2
[Ĥ ′′, [Ĥ ′′′, f2(�r ′′, �r ′′′)]]

}
. (26)

The functions f0, f1 and f 2 appearing here are still given by equalities (19). Note that the
thus found representation (26) for the K-factor ensures the equality in the description of the
pair of interacting particles.

11
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In our consideration, the double expansion (18), (20) therefore represents the K-factor (14)
in powers of 1/c and �r/R. Moreover, we retain only the first three terms in the expansion
in 1/c, imposing no restrictions on the expansion in the small parameter �r/R because the
function M contains all the higher order terms. In what follows, we therefore take into account
the interactions of the two quasimolecular electrons of an arbitrary multipolarity.

The motion of the separate electrons in the two-centre system A(Za−2)++BZb+ is described
by the Dirac one-electron Hamiltonian for the problem of two fixed Coulomb centres at the
distance R from each other:

Ĥ ′′ = c�α′′ �̂p′′ + β ′′mc2 − Zae
2

|�r ′′ − �Ra|
− Zbe

2

|�r ′′ − �Rb|
,

Ĥ ′′′ = c�α′′′ �̂p′′′ + β ′′′mc2 − Zae
2

|�r ′′′ − �Ra|
− Zbe

2

|�r ′′′ − �Rb|
.

(27)

Here, we keep h̄ �= 1 explicitly, Zae and Zbe are the charges of the point nuclei, �̂p′′ = −ih̄ �∇′′

and �̂p′′′ = −ih̄ �∇′′′ denote the operators of momentum of the electrons. All the position vectors
in (27) are measured from the origin of the laboratory system of coordinates, �Ra and �Rb are
the position vectors of nuclei AZa+ and BZb+, respectively; the internuclear distance can be
expressed as R = |�Rb − �Ra|.

Analyzing the performed calculations, it is easy to understand that result (26) can be
readily generalized. For this purpose it is necessary to introduce additional terms into the
Hamiltonians (27), for instance, to take into account a finite size and spin of the nucleus,
screening of the nucleus field by the electronic shell of the atomic core, etc. However, we
must remember that the eigenvalue problem (21) for such a Hamiltonian cannot be solved in
an explicit form except for limiting cases (e.g. the case of large internuclear distances [27]).

Let us now calculate the commutators appearing on the right-hand side of (26). First, note
that only one term in Ĥ ′′(Ĥ ′′′), namely c�α′′ �̂p′′(c�α′′′ �̂p′′′), is noncommuting with f1(�r ′′, �r ′′′)
and f2(�r ′′, �r ′′′) c�α′′ �̂p′′(c�α′′′ �̂p′′′). For this reason, having substituted the expressions (27) for
the operators Ĥ ′′ and Ĥ ′′′, we can disregard all the terms not containing the matrices �α′′, �α′′′

simultaneously:

[Ĥ ′′, f1] = c[�α′′ �̂p′′, f1], [f1, Ĥ
′′′] = c[f1, �α′′′ �̂p′′′],

[Ĥ ′′, [Ĥ ′′′, f2]] = c2[�α′′ �̂p′′, [�α′′′ �̂p′′′, f2]].
(28)

Having calculated the commutators (28) by means of the easily verifiable equations
[�α′′ �̂p′′, f1,2] = �α′′ �̂p′′f1,2, [�α′′′ �̂p′′′, f1,2] = �α′′′ �̂p′′′f1,2, we find that the contributions of the
second and third terms into expansion (26) are determined by the operator expressions:

± i

2c
(R1l[Ĥ

′′, f1] + [f1, Ĥ
′′′]) = ±h̄R

R1l �α′′ �n + �α′′′ �n
2|�r ′′ − �r ′′′|2 , (29)

1

2c2
R1l[Ĥ

′′, [Ĥ ′′′, f2]] = −h̄2

2
R1l

[
(�α′′ �∇′′)(�α′′′ �∇′′′)|�r ′′ − �r ′′′|

+ R2(�α′′ �∇′′)(�α′′′ �∇′′′)
1

|�r ′′ − �r ′′′|
]
, (30)

where �n = (�r ′′ − �r ′′′)/|�r ′′ − �r ′′′|. Thus, the operator, which describes (in the U(3)
mn,pr -matrix

(13)) the interaction of the two electrons via the field of virtual photons, is of the form

B1l (�r ′′, �r ′′′) = e2 exp

{
i

c
|ωpn|R

}{
1 − �α′′ �α′′′

|�r ′′ − �r ′′′| ± R
R1l �α′′ �n + �α′′′ �n
2|�r ′′ − �r ′′′|2

+
R1l

2

( �α′′ �α′′′ − (�α′′ �n)(�α′′′ �n)

|�r ′′ − �r ′′′| − R2 �α′′ �α′′′ − 3(�α′′ �n)(�α′′′ �n)

|�r ′′ − �r ′′′|3
)}

. (31)

12
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Here, the plus sign in front of the term containing the factor R corresponds to the case ωp < ωn,
and the minus sign corresponds to the case ωp > ωn. The first term in (31) represents the
energy of the instantaneous (Coulomb) interaction of the electrons, and other ones take into
account the corrections due to the retardation of relativistic interaction and the presence of the
electron spins.

Similarly, we consider the exchange of virtual photons in the second term of matrix (13)
(see the second diagram in figure 1). After necessary transformations of the corresponding
retardation factor, we arrive at the operator B2l (�r ′, �r ′′′), which can be obtain from (31) after
replacing the coefficient R1l by R2l = (ωn − ωp)/(ωr − ωl).

In the special case of the resonance exchange of photons, we have R1l = 1, and the
operator (31) is transformed into the generalized Breit operator [17] for the interaction of the
two quasimolecular electrons without emission or absorption of real photons. The condition
R1l = 1 implies that the transition of the system of the two particles into the intermediate state
should be carried out according to the law of conservation of energy: En − Ep = El − Em.
As it is expected, the operator (31) is transformed into the known Breit operator (1) for
the interaction of the two atomic electrons in He-like atoms at R1l = 1 and R → 0 (the
united-atom limit). Thereby, one can consider the operator (31) as a natural generalization
of the Breit operator [15, 22] to the case of arbitrarily large interelectron distances where
influence of the effect of dynamic retardation on the spin interactions of the electrons is
amplified. The nontrivial moment of such a generalization is the presence of additional
(compared to the Breit expression (1)) retardation terms depending on both the dimensional
parameter R and the spin operators of the electrons in expression (31) for B1l(�r ′′, �r ′′′).
Furthermore, note that this additional contribution to B1l (�r ′′, �r ′′′) has essentially a relativistic
character and appears due to an additional retardation of the relativistic interaction between
the two quasimolecular electrons located at large distances from each other, compared to
λ0 = 2πc/ω0.

According to the improvement of the Breit operator made in the present paper, it is
justifiable to call expression (31) the generalized radiative Breit operator of the long-range
type (to stress the possibility of using it to solve a wide range of two-electron problems in
physics of radiative atom–molecule collisions [2, 6, 10–14], in the theory of quasimolecular
Auger spectroscopy [7], and in several important problems of nonlinear and quantum optics
[17–21, 23]).

Note that the obtained expression (31) for the operator B1l (�r ′′, �r ′′′) is symmetrical with
respect to both the electrons. This is the result of the appropriate symmetrization of all the
terms in expansion (18) of the K-factor with respect to both the electrons. The symmetrical
representation for the relativistic operator of interaction of the two quasimolecular electrons
has been originally obtained in paper [17] on the basis of a consistent consideration of the
second-order effects of quantum electrodynamics that take into account the virtual exchange
of photons of all the polarizations.

In the series of papers [18–21] that actually led to the present stage of the investigations
of the problem of two electrons, the following expression has been obtained for the relativistic
operator of interaction of the two atomic electrons at an arbitrary distance from each other
within that of the third-order effects of quantum electrodynamics:

B̃1l (�r ′′, �r ′′′) = e2 exp

{
i

c
|ωpn|R

}{
1 − �α′′ �α′′′

|�r ′′ − �r ′′′| + R
�α′′′ �n

|�r ′′ − �r ′′′|2

+
R1l

2

( �α′′ �α′′′ − (�α′′ �n)(�α′′′ �n)

|�r ′′ − �r ′′′| − R2 �α′′ �α′′′ − 3(�α′′ �n)(�α′′′ �n)

|�r ′′ − �r ′′′|3
)}

. (32)
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As can be readily seen from the structure of the second term of (32), which is proportional to
R, the principal drawback of this operator is the absence of the symmetry in the description of
the pair of interacting particles.

An important remark, which follows from the comparison of formulae (31) and (32),
is that a consistent application of the procedure of symmetrization of the two last terms
in the expansion of the retardation factor (18) leads to the appearance of a new term
±R1lR(�α′′ �n)/2|�r ′′ − �r ′′′|2 in the final expression (31) for the operator B1l(�r ′′, �r ′′′) in
comparison with representation (32). This term is due to an additional retardation in the
interaction of the electrons located at arbitrarily large distances from each other. Therefore, one
can expect that some results of references [18–21] might be erroneous because of employing
the operator (32) in the calculations.

4. Conclusion

The problem of interaction of two quasimolecular electrons via a field of virtual photons that
is accompanied by emission or absorption of a real photon is solved in the current paper. Such
an interaction is considered as a third-order effect of quantum electrodynamics described by
the Feynman diagrams in figure 1. We now shall list main properties of this interaction.

We have two domains of the configuration space where the generalized Breit operator of
the long-range interaction type (31) behaves differently if the relative distance r12 = |�r ′′ −�r ′′′|
between the two electrons changes. For instance, in the united-atom limit (R → 0), formula
(31) for the operator B1l (�r ′′, �r ′′′) becomes the limiting (Breit) expression (1), which correctly
describes the retardation effects of the relativistic interaction only at a small interparticle
distance r12. More precisely, we can conclude that the domain of applicability of the Breit
formula (1) is given by

ω0r12/c � 1, (33)

where ω0 is a characteristic frequency of the spectrum of the interacting electrons. Let

cl denote such a domain of the configuration space, which we call the domain of close
electron correlations. However, in the domain 
f , where the electrons belong to the different
nuclei and inequality (17) is satisfied for all �r � R < ∞, the Breit operator (1) fails to
describe even qualitatively the relativistic interaction of the two electrons. At the same time,
the relativistic operator B1l (31) constructed herein describes the retarded interaction of the
two quasimolecular electrons in the domain 
cl of close electron correlations as well as in
the domain 
f of far electron correlations. Therefore, this operator can be used to solve
many two-electron problems in atomic and molecular spectroscopy, astrophysics, theory of
slow atomic collisions, etc. Moreover, it is necessary to employ the relativistic operator
of interaction of the two electrons (31) in mathematical modelling of atomic clusters [28],
investigation of optical properties of various nanostructural systems in intense optical fields
[29, 30] and solving some important problems of recording, reading and transmission of
quantum information from one two-level atom (qubit) to another [31, 32].

For each of the domains 
cl and 
f of the interelectron distances r12, we have
the corresponding time scales of interaction transfer and the corresponding approximated
calculations, in which we separate small parameters and take into account the different types
of intermediate states and interactions. Thus, we reiterate not only that we can use the
generalized Breit operator B1l(�r ′′, �r ′′′) to solve the multielectron two-centre problems, but
also the quantum electrodynamic treatment of two-electron interaction based on the standard
Breit operator (1) is incomplete.
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As shown in the preceding section, the standard assumption in the derivation of the Breit
operator (1) is that the only small parameter, with respect to which the retardation factor must
be expanded, is quantity (33) [22]. This means that in addition to the characteristic (mean)
transition time Te = 2π/ω0, we also use the unified time scale Tint = r12/c, corresponding
to the domain 
cl. We can interpret this time as an interaction transfer time. Then, the
condition 2πTint � Te, that a substantial change in the electron density of the system of the
two interacting electrons occurs during the interaction transfer time, must be satisfied.

At rather large interelectron distances (in the domain 
f ), where the interaction transfer
time Tint = R/c is much larger than the mean electron transition time Te, the natural small
parameter for expansion is the dimensionless quantity (17). Exchange by virtual photons at
such distances results in the interelectron interaction (31) that, in addition to the Coulomb
and Breit interactions (1), contains additional relativistic terms depending on the electron spin
operators and internuclear distance R. These terms appear due to an additional retardation
of the interaction of the two quasimolecular electrons located at an arbitrary distance from
each other. Thereby, expression (31) for the relativistic operator B1l (�r ′′, �r ′′′) differs from the
similar result (32) of papers [18–21] not only by the additional factor ±1/2 in the second term
of expression (31), but also by the additional term ±RR1l (�α′′ �n)/2|�r ′′ − �r ′′′|2, which takes into
account the additional retardation of the interaction of the two quasimolecular electrons.
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